Discrete-valued Neural Networks Using Variational Inference

ثبت نشده
چکیده

The increasing demand for neural networks (NNs) being employed on embedded devices has led to plenty of research investigating methods for training low precision NNs. While most methods involve a quantization step, we propose a principled Bayesian approach where we first infer a distribution over a discrete weight space from which we subsequently derive hardware-friendly low precision NNs. To this end, we introduce a probabilistic forward pass to approximate the intractable variational objective that allows us to optimize over discrete-valued weight distributions for NNs with sign activation functions. In our experiments, we show that our model achieves state of the art performance on several real world data sets. In addition, the resulting models exhibit a substantial amount of sparsity that can be utilized to further reduce the computational costs for inference.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete-valued Neural Networks Using Variational Inference

The increasing demand for neural networks (NNs) being employed on embedded devices has led to plenty of research investigating methods for training low precision NNs. While most methods involve a quantization step, we propose a principled Bayesian approach where we first infer a distribution over a discrete weight space from which we subsequently derive hardware-friendly low precision NNs. To t...

متن کامل

Bayesian non parametric inference of discrete valued networks

We present a non parametric bayesian inference strategy to automatically infer the number of classes during the clustering process of a discrete valued random network. Our methodology is related to the Dirichlet process mixture models and inference is performed using a Blocked Gibbs sampling procedure. Using simulated data, we show that our approach improves over competitive variational inferen...

متن کامل

Neural Variational Inference and Learning in Belief Networks

•We introduce a simple, efficient, and general method for training directed latent variable models. – Can handle both discrete and continuous latent variables. – Easy to apply – requires no model-specific derivations. •Key idea: Train an auxiliary neural network to perform inference in the model of interest by optimizing the variational bound. – Was considered before for Helmholtz machines and ...

متن کامل

Variational Learning in Nonlinear Gaussian Belief Networks

We view perceptual tasks such as vision and speech recognition as inference problems where the goal is to estimate the posterior distribution over latent variables (e.g., depth in stereo vision) given the sensory input. The recent flurry of research in independent component analysis exemplifies the importance of inferring the continuous-valued latent variables of input data. The latent variable...

متن کامل

FINITE-TIME PASSIVITY OF DISCRETE-TIME T-S FUZZY NEURAL NETWORKS WITH TIME-VARYING DELAYS

This paper focuses on the problem of finite-time boundedness and finite-time passivity of discrete-time T-S fuzzy neural networks with time-varying delays. A suitable Lyapunov--Krasovskii functional(LKF) is established to derive sufficient condition for finite-time passivity of discrete-time T-S fuzzy neural networks. The dynamical system is transformed into a T-S fuzzy model with uncertain par...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017